Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 9: uhac221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479579

RESUMO

The Banana Genome Hub provides centralized access for genome assemblies, annotations, and the extensive related omics resources available for bananas and banana relatives. A series of tools and unique interfaces are implemented to harness the potential of genomics in bananas, leveraging the power of comparative analysis, while recognizing the differences between datasets. Besides effective genomic tools like BLAST and the JBrowse genome browser, additional interfaces enable advanced gene search and gene family analyses including multiple alignments and phylogenies. A synteny viewer enables the comparison of genome structures between chromosome-scale assemblies. Interfaces for differential expression analyses, metabolic pathways and GO enrichment were also added. A catalogue of variants spanning the banana diversity is made available for exploration, filtering, and export to a wide variety of software. Furthermore, we implemented new ways to graphically explore gene presence-absence in pangenomes as well as genome ancestry mosaics for cultivated bananas. Besides, to guide the community in future sequencing efforts, we provide recommendations for nomenclature of locus tags and a curated list of public genomic resources (assemblies, resequencing, high density genotyping) and upcoming resources-planned, ongoing or not yet public. The Banana Genome Hub aims at supporting the banana scientific community for basic, translational, and applied research and can be accessed at https://banana-genome-hub.southgreen.fr.

3.
Plant Genome ; 15(3): e20221, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35644986

RESUMO

Bread wheat (Triticum aestivum L.) is one of humanity's most important staple crops, characterized by a large and complex genome with a high level of gene presence-absence variation (PAV) between cultivars, hampering genomic approaches for crop improvement. With the growing global population and the increasing impact of climate change on crop yield, there is an urgent need to apply genomic approaches to accelerate wheat breeding. With recent advances in DNA sequencing technology, a growing number of high-quality reference genomes are becoming available, reflecting the genetic content of a diverse range of cultivars. However, information on the presence or absence of genomic regions has been hard to visualize and interrogate because of the size of these genomes and the lack of suitable bioinformatics tools. To address this limitation, we have produced a wheat pangenome graph maintained within an online database to facilitate interrogation and comparison of wheat cultivar genomes. The database allows users to visualize regions of the pangenome to assess PAV between bread wheat genomes.


Graph pangenomes represent more genomic variants than reference genomes. We present a wheat graph pangenome based on 16 public assemblies. We present Wheat Panache, an online visual representation of this graph. Wheat Panache lets users search the graph for presence-absence variants. We also distribute the graph preindexed for Giraffe utilization.


Assuntos
Pão , Triticum , Genoma de Planta , Melhoramento Vegetal , Análise de Sequência de DNA , Triticum/genética
4.
Bioinformatics ; 37(23): 4556-4558, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34601567

RESUMO

MOTIVATION: Pangenomics evolved since its first applications on bacteria, extending from the study of genes for a given population to the study of all of its sequences available. While multiple methods are being developed to construct pangenomes in eukaryotic species there is still a gap for efficient and user-friendly visualization tools. Emerging graph representations come with their own challenges, and linearity remains a suitable option for user-friendliness. RESULTS: We introduce Panache, a tool for the visualization and exploration of linear representations of gene-based and sequence-based pangenomes. It uses a layout similar to genome browsers to display presence absence variations and additional tracks along a linear axis with a pangenomics perspective. AVAILABILITY AND IMPLEMENTATION: Panache is available at github.com/SouthGreenPlatform/panache under the MIT License.


Assuntos
Genoma , Software , Navegador , Bactérias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...